Anwendungen der Kl / SoSe 2018

Organisatorisches

Prof. Dr. Adrian Ulges

Angewandte Informatik / Medieninformatik / Wirtschaftsinformatik / ITS

Fachbereich DSCM Hochschule RheinMain

Kurs-Website: www.ulges.de

(Übersicht Kursteilnehmer!) (brauche Informatik-LDAP-Kennung für Zugriff auf Materialien)

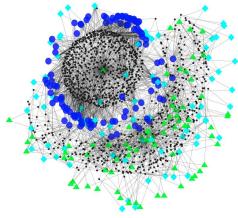
Adrian Ulges

Anwendungen der Künstlichen Intelligenz (SoSe 18)

News

Teilnehmer und Gruppenaufteilung

Weis, Hendrik


Die Veranstaltung ist stark nachgefragt, so dass nicht für alle Studierenden Plätze vorhanden sind. Ich habe nun nach folgenden Regeln die Plätze vergeben (siehe Tabelle unten):

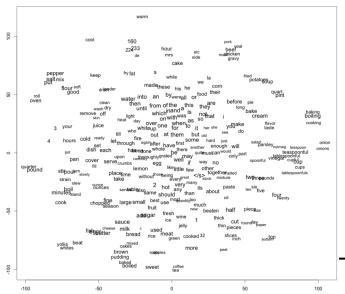
- Teilnehmer; Wer das Praktikum über IGEL oder AoR belegt hat, darf definitiv teilnehmen.
- Fairness: Wenn Sie feststellen, dass das Modul doch nicht das richtige für Sie ist, geben Sie bitte zeitnah bescheid es gibt weitere Interessenten für Ihre Plätze!
- Gruppenverteilung: Durch Unregelmäßigkeiten bei den Belegungen wurden leider zu viele Studierende in Gruppe A verteilt. Ich habe per Zufallsauswahl Teilnehmer in Gruppe B verlegt (und hierbei sichergestellt, dass kein Konflikt mit anderen Lehrveranstaltungen existiert). Ein Tausch von Gruppen ist nur möglich, falls ein einvernehmlicher Tauschpartner gefunden wird. Zweierteams für das Praktikum können nur innerhalb derselben Praktikumsgruppe gebildet werden.
- o Die verbliebenen freien Plätze in Gruppe B habe ich per Zufallsauswahl verteilt.
- Warteliste: Die übrigen sind auf einer Warteliste. Ich weise aber darauf hin, dass (nach Auskunft Ihrer Studiengangsleitungen) in anderen 10CP-Veranstaltungen definitiv noch Plätze frei sind.
- o Sollten vor Ende der QIS-Deadline Plätze frei werden, werde ich Nachrücker nach Reihenfolge der Liste kontaktieren und erwarte jeweils Rückmeldung binnen eines Tages, sonst ist der nächste dran.

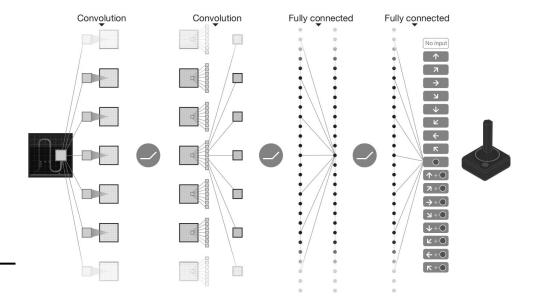
Eldags, Dominik

• Für die, die nicht reingekommen sind: Es tut mir leid, ich habe versucht unter den gegebenen Rahmenbedingungen fairstmöglich zu verfahren. Ich hoffe Sie verstehen dass ich keine Nachbesserungen am obigen Verfahren vornehmen kann.

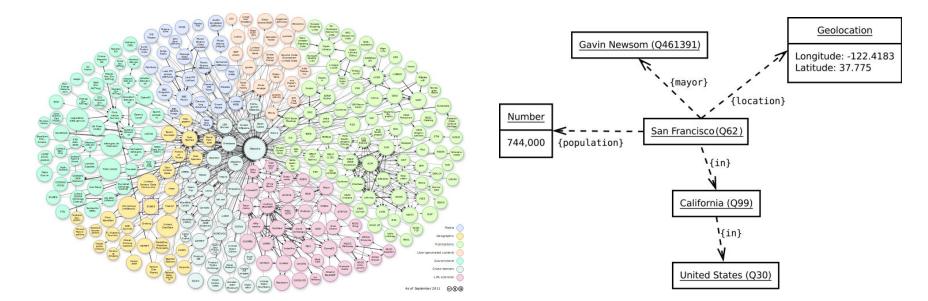
Gruppe A	Gruppe B	Warteliste
Heeß, Kevin	Petrak, Dominic	1. Lamkadmi, Mostafa
Lamott, Marcel	Kuhlbrodt, Timo	2. Hemp, Niklas
Diez, Savina	Gehrke, Konstantin	3. Elmas, Onur
Kissel, Jens	Wagner, Julian	4. Shamun, Tiglat
Schönberger, Patrick	Carl, Jan-Luca	5. Sancar, Semih
Krafft, Mathieu	Ramsahye, Yannick	6. Siegert, Jan-Phillip
Koch, Nils	Klonowski, Fabio	
Riegler, Patrick	Wunn, Robin	
Lies, Juliane	Bahrololloomi, Farnod	
Mathis, Vincent	Hanif, Mahmud	
Le, Michelle	Fracella, Adrian	
Leipelt, Dominik	Wehenkel, Lukas	

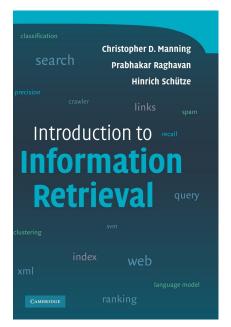
Themen: IR und NLP


- **Textsuche**: Grundlagen & Algorithmen
- Lernende Verfahren: **PageRank** und Feedback
- Anwendung: Wikipedia-Suche (Python)
- Verarbeitung natürlicher Sprache / Textanalyse



Themen: Machine Learning


- **Grundlagen** und Grundbegriffe des Machine Learning
- Neuronale Netze und Deep Learning
- Anwendung: Natural Language Processing (Python)



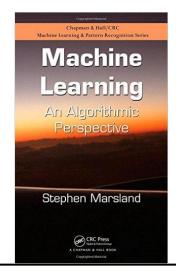
Themen: Semantic Web

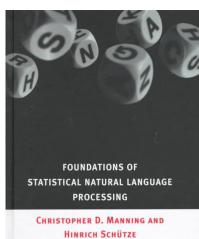
- Wissensgraphen als Sammlungen von Tripeln
- Repräsentation mit RDF, Query-Sprache SPARQL
- **Große Ontologien**: Linked Open Data (LOD)

Literatur

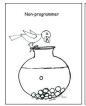
 Nielsen: Neural Networks and Deep Learning.

http://neuralnetworksanddeeplearning.com/


 Jurafski, Martin: Speech and Language Processing.

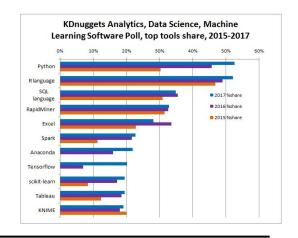

https://web.stanford.edu/~jurafsky/slp3/

- Manning et al.: Introduction to Information Retrieval.
- Marsland: Machine Learning an Algorithmic Perspective, CRC Press, 2009 (Bibliothek).
- Manning,Schütze: Foundations of Statistical Language Processing (Bibliothek, e-Book).
 https://hds.hebis.de/hsrm/Record/HE B398591768



Warum Python?

Weltweit verbreitetste Sprache im Im Bereich Data Science


- Populärste Skriptsprache weltweit (Rang 4 in $TIOBE^{(1)}$)
- voll objektorientiert
- extrem leicht zu lernen ("Pseudo-Code that runs")
- funktionale Elemente
- Mächtige Bibliotheken (numpy, sklearn, pandas, matplotlib)
- Datenintegration (Web, Information Retrieval, NLP, Bildverarbeitung)

Feb 2018	Feb 2017	Change	Programming Language	Ratings	Change
1	1		Java	14.988%	-1.69%
2	2		С	11.857%	+3.41%
3	3		C++	5.726%	+0.30%
4	5	^	Python	5.168%	+1.1296
5	4	•	CH	4.453%	-0.45%

Der AnwKI - Technologie-Stack

SPARQL

(Semantische Suche)

ElasticSearch

(Textsuche)

Tensorflow

(Neuronale Netze)

NLTK

(Natural Language Processing)

Numpy, Sklearn, Matplotlib, Pandas

(Python for Data Science)

Python

Termine	Vorlesung MO, 10:00, D-17	"Praktikum" Block 1 MO, 14:15, D-17	"Praktikum" Block 2 MO, 11:45, D-13 <u>oder</u> MO, 16:00, D-12
16.04.	Einführung (KI & QA)	Information Retrieval	Python-Crashkurs Suchmaschine (ElasticSearch)
23.04.	Information Retrieval	NLP	Suchmaschine (ElasticSearch)
30.04.	Machine Learning	Neuronale Netze	Query Expansion (NLTK), Neuronale Netze (Tensorflow)
07.05.	Neuronale Netze im NLP	Neuronale Netze im NLP	Neuronale Netze (Tensorflow)
14.05.	NLP	Semantic Web	Neuronale Netze (Tensorflow), Wordnet (NLTK)
	Pfingsten	Pfingsten	
28.05.	Semantic Web	Reserve	DBPedia & SPARQL
04.06.			
11.06.			
18.06.	PROJEKT	PROJEKT	
25.06.			
02.07.			

Vorlesung Projekt Projekt

Zeitaufwand

- ☐ Dies ist ein **10-CP-Fach**
 - → Rechnen Sie mit hohem Arbeitsaufwand!
- □ 300 h / 15 Wochen = 20 Stunden pro Woche
- ☐ 6 Stunden Präsenzzeit
- 4 Stunden Vor-/Nachbearbeitung
- 10 Stunden praktische Tätigkeit (berechnet für einen "Normstudent")

Benotung

- **Prüfungsform**: Praktische Tätigkeit und Fachgespräch
 - 70% Projekt
 - 30% Fachgespräch
- Frühe Anmeldung im QIS (keine weitere Warnung)!
- Praktikum: Anwesenheitspflicht

QIS-Deadline

23.04.

Benotung (cont'd)

- Projekt

- Aufbau eines Question-Answering-Systems
- Entwicklung in Python, Teams von 2 Studierenden
- Contest
- Note auf Grundlage von
 - Review der Abgabe (Code, Doku, Ergebnisse)
 - wöchentlichem Fortschritt

Fachgespräch

- Präsentation + Fragen
- Fragestellungen ausgehend vom Projekt...
- decken aber den gesamten Kurs ab
- vorbereiten wie für eine mündliche Prüfung!

Voraussetzung: Englisch

- Vorlesung, Praktikum, Prüfung in Deutsch
- Aber: "Zielsprache" dieser Veranstaltung ist Englisch!
- Projekt und Übungen zielen darauf ab, Englische Fragen mit Hilfe eines Englischen Korpus zu beantworten.
- Begründung
 - viele Modelle und Trainingsdaten in Englisch verfügbar
 - besserer Lerneffekt, wenn die Sprache nicht die eigene ist
- Dementsprechend sind auch viele Beispiele in der Vorlesung in Englischer Sprache.
- Grundlegende Englisch-Kenntnisse werden deshalb vorausgesetzt!

Who murdered Abraham Lincoln?

John Wilkes Booth.

- Datengrundlage: "Wikibase" (300,000 Wikipedia-Seiten)
- Komponenten werden bereits in den Übungen entwickelt
- Evaluation im Rahmen eines **Contests**

Anwendungen der Künstlichen Intelligenz (SS17)

Scoreboard Question Answering

High Scores

rank		team	score(percent)
1.	D ₁	Articifial Stupidity	33.0
2.	-	Team Triggered	30.0
3.	V	Die eisernen Einhoerner	28.3