

Prüfsummenverfahren

Eingabefehler
Die Verhoeff'sche Fehlerstatistik
Prüfsummenverfahren
Vergleichende Bewertung

25.03.2003

H. Werntges, FB Informatik, FH Wiesbaden

3

Eingabefehler

- Manuelle Eingabefehler
- Bereits bei 6-stelligen Zahlen relevant
 - Manuelle EAN-Erfassung (12/13 Stellen)?
- Scannerfehler
 - Barcodeleser arbeiten nicht fehlerfrei
 - Barcodes können beschädigt werden
- OCR-Verfahren
 - Neuartige Erfassungsfehler mit eigener Charakteristik
 - Typ "Einzelfehler", ca. 1%

Eingabefehler

Klassische Arbeit zum Thema:

- J. Verhoeff, Error-Correcting Decimal Codes, Mathematical Centre Tracts, Vol. 29, Mathematisch Centrum, Amsterdam 1969
- J. Verhoeff untersuchte die Art und relative Häufigkeit von Fehlertypen bei der Eingabe beliebiger sechsstelliger Zahlen

Er veröffentlichte eine Fehlerstatistik und ersann Prüfziffer-Verfahren zur Minimierung der von ihm ermittelten häufigsten Fehlerarten

Analoga zu Prüfziffer-Verfahren in der Informatik: CRC-, Parity-, ECC-Verfahren der Digitaltechnik.

25.03.2003

H. Werntges, FB Informatik, FH Wiesbaden

Die Verhoeffsche Fehlerstatistik

Fehlerart	Symbol	Häufigkeit/%		
Einzelfehler	x <=> y	79,0		
Nachbarvertauschung	xy <=> yx	10,2		
Sprungtransposition	xzy <=> yzx	0,8		
Zwillingsvertauschung	xx <=> yy	0,6		
phonetische Fehler (Bsp: 50 <=> 15)	a0 <=> 1a	0,5		
Sprung-Zwillingsfehler	xzx <=> yzy	0,3		
sonstige Fehler	-	8,6		

Prüfzifferverfahren

- Erster Ansatz
 - Prüfziffer hinzu, so dass sum $|_{i=0}$ n $d_i = 0$
 - Bemerkungen
 - Prüfziffer darf "irgendwo" stehen.
 - Einfache Begrenzung auf Ziffernwert durch Rechnung "modulo 10"
 - Theoretischer Hintergrund
 - Mathematischer Begriff des Körpers (Menge K, Abb. +, Abb. x),
 - Endlicher K\u00f6rper, Minimal-Beispiel: K₂ = ({0, 1}, +, x), mit Definition der Abbildung per 2x2-Matrizen
 - schließlich: K₁₀
 - Problem: Immun gegen Nachbarvertauschungen!

25.03.2003

H. Werntges, FB Informatik, FH Wiesbaden

.

Prüfzifferverfahren

- Zweiter Ansatz
 - Gewichte hinzu, so dass $sum|_{i=0,n} (w_i * d_i) = 0$
 - Problem: Wie Gewichte so wählen, dass Verhoeff-Fehler minimiert werden?
 - Modulo-10 Verfahren sind begrenzt:
 - Einzelfehler:

Sämtliche Gewichte müssen teilerfremd zur 10 sein

- · Frage: Gewichte sind Ziffern warum?
- Frage: Welche Gewichte sind teilerfremd zur 10?
- Antwort: 1, 3, 7, 9
- Nachbarvertauschungen:
 Differenzen benachbarter Gewichte müssen teilerfremd zur 10 sein.
- · Beide Bedingungen schließen sich gegenseitig aus!

Die Prüfziffer des EAN/UCC

- Prüfzifferermittlung beim EAN/UCC-System
 - Gewichte: 1 3 1 3 ... von rechts nach links (!)
 - Beispiel EAN:
 - EAN = 4210201142270
 - Gew. = 1313131313131
 - Prod. = 4 6 1 0 2 0 1 3 4 6 2 1 0 (modulo 10)
 - Summe = $30 = 0 \pmod{10}$
 - Beispiel NVE, Prüfziffer x gesucht:
 - NVE = 34210201123456789x
 - Gew. = 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
 - Prod. = 9 4 6 1 0 2 0 1 3 2 9 4 5 6 1 8 7 x (modulo 10)
 - Summe = $68 + x \pmod{10} = 8 + x \pmod{10}$
 - Wähle x so, dass 8 + x = 0 (mod 10) ==> x = 2

25.03.2003

H. Werntges, FB Informatik, FH Wiesbaden

^

Ein optimales Prüfziffer-Verfahren

- Ausweg
 - Teilerfremdheit trivial erfüllt, wenn Basis eine Primzahl ist
 - Praktisch: 11 ist schon eine
- · Optimaler Fall:
 - $w_i := 2^i \pmod{11}$
 - jeder Wert von 1 bis 10 (0) wird durch 2ⁱ genau einmal angenommen!
- Problem der Praxis: Prüfziffer kann {0,...9} verlassen
 - Ausweg A:
 - Derartige Nummern schon bei der Vergabe ausschließen
 - Ausweg B:
 - Nichtnumerische "Ziffer" einführen. Beispiel: "X" bei der ISBN

Das Prüfziffer-Verfahren der ISBN

- 10 Ziffern für vier Teile, mit Bindestrichen oder Leerzeichen getrennt
 - 1. 1-5 Länderziffern (0-9)
 - 0 und 1 / 2 / 3 / 4: Englischer / Französischer / Deutscher / Japanischer Sprachraum, usw.
 - 99937: Macau
 - 2. 2-7 Verlagsziffern (0-9)
 - 3. 1-6 Artikelziffern (0-9)
 - 4. 1 Prüfziffer (0-9 sowie X für 10)
- Gewichte:
 - w_i := i (von links nach rechts)
 - jeder Wert von 1 bis 10 (X) wird genau einmal angenommen, und zwar der Reihe nach

25.03.2003

H. Werntges, FB Informatik, FH Wiesbaden

11

Das Prüfziffer-Verfahren der ISBN

- Beispiele
 - Addison-Wesley, "XML in der Praxis":
 - ISBN=3 8273 1330 9, mit EAN=9783827313300
 - Addison-Wesley, "Programming Ruby":
 - ISBN=0-201-71089-7, mit EAN=9780201710892
 - Addison-Wesley, "LaTeX..."
 - ISBN=0-201-15790-X (ohne EAN, Existenz von "X"!)
 - Wrox Press, "XSLT" Programmer's Reference 2nd ed."
 - ISBN=1-861005-06-7, mit UCC=676623050670
- ISBN und EAN/UCC
 - EAN-Präfix "978" und "979" ist für ISBN reserviert
 - Addison-Wesley erzeugte die EAN sinnvoll
 - Wrox's Schema ergibt Probleme bei Prüfziffer "X"!

🛊 Fehle	ererk	ennu	ng der	Verfa	hren		10		
Verfahren	x<=>y	xy - yx	xzy - yzx	xx - yy	a0 - 1a	xzx - yzy	sonst. (Schätz.)		
mod 10, 1,1,1,1	100,0	0,0	0,0	88,9	100,0	88,9	90,0		
mod 10, 1,2,1,2	94,4	100,0	0,0	100,0	87,5	88,9	90,0		
mod 10, 1,3,7,9	100,0	88,9	88,9	44,4	100,0	88,9	90,0		
mod 11, ISBN	100,0	100,0	100,0	80,0	88,9	100,0	90,9		
mod 11, 2 ⁱ	100,0	100,0	100,0	100,0	100,0	100,0	90,9		
Nach: J. Michael, Mit Sicherheit, c't 7/1996, p. 264-266.									

25.03.2003

H. Werntges, FB Informatik, FH Wiesbaden

13