
Thread Migration for Mixed-Criticality Systems

Alexander Zuepke
RheinMain University of Applied Sciences, Wiesbaden, Germany

Email: alexander.zuepke@hs-rm.de

Abstract—This work-in-progress paper presents a thread mi-
grating operating system concept for mixed-criticality systems
on multi-core platforms. Thread migration provides fast context
switching between isolated software components which handle
shared resources. Combined with criticality inheritance protocols
and a multi-policy scheduler, the described operating system
concept aims to meet the level of determinism and analysability
which is required for safety-critical applications.

I. INTRODUCTION
With Cyber Phyiscal Systems and the Internet of Things,

mixed-criticality systems have become a reality in the embed-
ded computing world. Combined with the recent availability
of multi-processor systems, it imposes a new challenge on
operating systems when different functional units are combined
in a single computer system. Similarily, regulatory standards
like ISO 26262 require freedom of interference between these
independent functional units [1]. On the other hand, tight inte-
gration of today’s hardware technology results in problematic
sharing of computational resources like caches and memory
bandwidth, and functional resources like I/O devices and buses.
An operating system for such scenarios should therefore help
to make the side effects of resource sharing predictable and
enforce the required level of determinism.

From a real-time perspective, this means that applications
of different criticality levels (in the sense of importance to
a device’s overall function and cost of malfunction) need
to be scheduled concurrently. It also requires that access to
shared resources and any resulting priority inversion problems
need to be solved in a bounded worst-case execution time
(WCET) to guarantee that deadlines are met. From a safety
perspective, a high degree of separation between different
application components and shared components is necessary
to guarantee the required freedom of interference and fault
isolation. State of the art techniques place applications, drivers,
and services into separate address spaces, protected by means
of the processor’s memory management unit (MMU) [2] [3].

However, while decomposition of a system’s components
into multiple address spaces helps to fulfill the safety re-
quirements, it entails overhead due to the cost of additional
context switches. Therefore, operating system support for
mixed criticality systems should include:
• isolation of components in separate address spaces,
• fast context switches between isolated components,
• bounded WCET of all internal operations of the kernel,
• solving of priority inversion problems on shared resources,
• concurrent scheduling of threads of different criticality.

This paper briefly presents the design principles of the
WINGERT operating system, which addresses the goals dis-
cussed above. Its overall architecure is shown in section II, the
benefits of thread migration is described in III, scheduling in
IV, resource sharing in V, and related work in VI. We conclude
and give an overview of future work in section VII.

II. SYSTEM ARCHITECTURE
The WINGERT OS is built upon a small kernel running

in the CPU’s privileged mode and a hierarchically structured
set of isolated address spaces (tasks) of different criticality
in user mode, which comprise applications or services like
shared drivers. Following the design principle of a small
trusted computing base, critical application tasks only depend
on the required subset of tasks providing shared services for
them. Communication between tasks is implemented by remote
procedure calls (RPCs), which are described in detail in the
following section. Starting from the application tasks as the
leaves of the task tree, the hierarchy of depending tasks down
to the kernel as the root node never decreases in the criticality
level. This implies that applications can trust the tasks down
in the chain.

Further, all system resources like memory, I/O and time
budgets are statically assigned to the tasks at startup. This
resource partitioning approach eliminates the later need to
transfer system resources or access permissions via task com-
munication at runtime, keeping the RPC implementation in the
kernel fast and simple.

Each task manages its capabilities in its own name space.
Capabilities address the user and kernel parts of threads, inter-
rupts, child tasks, child address spaces, and communication
channel endpoints. Memory is addressed differently by its
implicit virtual address in the task’s page tables. Additionally,
tasks can freely repurpose their assigned amount of page-
sized kernel memory to page tables for dynamically created
memory mappings or in-kernel stacks for threads. This degree
of freedom allows for example a para-virtualized Linux task
to reconfigure itself for different use cases at runtime, without
violating the static partitioning approach.

III. THREAD MIGRATION
The main difference of WINGERT compared to other micro

kernels like L4 lies in its low-level abstraction model named
body and soul instead of threads as the basic entities of exe-
cution. The soul is a scheduling entity with priority, deadline,
and a kernel stack. It migrates synchronously between different
bodies, which comprise of an entry point and dedicated stack
in user space. The invocation of a new body resembles an RPC
call to the same or a remote address space, while keeping the
calling soul to have a unique entity to control the execution
flow and to reduce context switching overhead in the kernel.

For asynchronous communication and decoupling of po-
tentially blocking calls, the kernel provides fork-join opera-
tions: a soul forks and instructs its forked sibling to issue
a synchronous RPC. With a technique named lazy forking,
the kernel follows the forked path using the original soul
first and performs the real fork operation when a blocking
point is encountered. Assuming there is no blocking point, the
forked one returns the result and joins gracefully without any
overhead.



IV. SCHEDULING
The practical challenge of mixed-criticality scheduling

lies in reclaiming scheduling reservations of higher critical
tasks at run time caused by their overly pessimistic WCET
analysis. Inspired by MC2 [4], the kernel scheduler provides
multiple scheduling policies for different levels of criticality.
In descending order of criticality, these are:

1) P-FP: partitioned fixed-priority scheduling
2) P-EDF: partitioned earliest deadline first scheduling
3) G-FP: global fixed-priority scheduling
4) G-EDF: global earliest deadline first scheduling
5) BE: best effort scheduling for non-real-time applications
6) IDLE: scheduling of idle threads of the lowest level

All scheduling policies are mapped into the same priority
space, but have disjoined priority ranges and different queueing
policies (FIFO or deadline ordered). The highest priority level
ready queues are kept exclusive per processor to ensure parti-
tioned scheduling, the lower levels share a single set of ready
queues. The dispatcher picks the highest eligible thread for
scheduling on its CPU. Supporting other scheduling policies,
like the ones used by Linux, is not the responsibility of the
OS scheduler. On top of this system, a para-virtualized Linux
implementation would use its built-in scheduler and dispatch
its processes by thread migration.

V. RESOURCE SHARING
WINGERT provides two different mechanisms for synchro-

nization and resource sharing: thread migration across tasks;
and mutexes and condition variables shared by threads in the
same task. The latter use Deterministic Futexes described in
[5] as the underlying kernel mechanism. The implementation
enters the kernel only on contention and uses atomic operations
on variables in user space in the fast path.

As bodies have a single user space stack only and therefore
do not support multiple souls inside, migrating souls have to
wait when a body is already occupied. With an extension to let
souls wait outside the body and let them stay there until they
are signalled again by the body, the body effectively becomes
a Monitor [6].

On contention, both bodies and futexes need to properly
solve priority inversions problems. The standard priority in-
heritance protocol (PIP) [7] solves this issue for the class of
highest criticality P-FP scheduling. Additionally, the protocol
covers P-EDF by prefering earlier deadlines on priority ties.
Finally, with migratory priority inheritance [8], the scheduler
migrates preempted threads across CPUs and solves priority
inversions in global scheduling scenarios. With these exten-
sions for mixed-criticality scheduling, the described protocol
effectively becomes a criticality inheritance protocol.

VI. RELATED WORK
WINGERT has in common with micro kernels like L4 [9] a

similar overall system structure of decomposed software com-
ponents in isolated address spaces and the use of a synchronous
context switch mechanism as a means of communication [2].
However, our approach is more specific to the mixed-criticality
use case than the policy-free approach in L4.

Thread migration was previously used in [10], [11], and
[12]. Compared to COMPOSITE, which uses thread migration
and solves contention on user stacks with PIP and PCP
(priority ceiling protocol) [3], the presented approach scales
to multi-processor platforms.

VII. CONCLUSION AND FUTURE WORK
This paper presented the WINGERT operating system,

which aims to exploit thread migration for real-time systems.
Using thread migration for strictly hierarchical system designs
such as mixed-criticality systems seems to be a good trade-off
between software component isolation for safety reasons on
the one hand and fast performance on the other hand, while at
the same time reducing the number of possibly misbehaving
actors and keeping the overall system complexity low.

In future work, we plan to evaluate the system performance
and provide an in-depth analysis of the presented criticality
inheritance protocol, with a special focus on an implementation
with a bounded WCET.

REFERENCES
[1] ISO 26262, “Road vehicles – Functional safety,” 2011.
[2] J. Liedtke, “On µ-Kernel Construction,” in SOSP, 1995, pp. 237–250.
[3] Q. Wang, J. Song, and G. Parmer, “Execution Stack Management for

Hard Real-Time Computation in a Component-Based OS,” in RTSS,
2011, pp. 78–89.

[4] J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and D. M.
Johnson, “RTOS Support for Multicore Mixed-Criticality Systems,” in
RTAS, 2012, pp. 197–208.

[5] A. Zuepke, “Deterministic Fast User Space Synchronisation,” in OS-
PERT Workshop, 2013.

[6] C. A. R. Hoare, “Monitors: An Operating System Structuring Concept,”
Commun. ACM, vol. 17, no. 10, pp. 549–557, Oct. 1974.

[7] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE Trans. Computers,
vol. 39, no. 9, pp. 1175–1185, 1990.

[8] B. B. Brandenburg and A. Bastoni, “The case for migratory priority
inheritance in linux: Bounded priority inversions on multiprocessors,”
in Fourteenth Real-Time Linux Workshop, 2012.

[9] K. Elphinstone and G. Heiser, “From L3 to seL4 What Have We Learnt
in 20 Years of L4 Microkernels?” in SOSP, 2013, pp. 133–150.

[10] B. Ford and J. Lepreau, “Evolving Mach 3.0 to A Migrating Thread
Model,” in USENIX Winter Conference, 1994, pp. 97–114.

[11] G. A. Parmer, “Composite: A Component-based Operating System for
Predictable and Dependable Computing,” Ph.D. dissertation, Boston,
MA, USA, 2010.

[12] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silberschatz, “The
Pebble Component-based Operating System,” in USENIX ATC, 1999.


