
Mixed-Criticality Scheduler

Higher criticality levels require large time budgets due to their more conservative

WCET analyses. The emerging gap between theoretical and actual processor

utilization is filled by lower critical workload. Additionally, higher critical workloads

bind their execution to specific CPU cores, while lower critical and best-effort

applications can utilize the remaining processing time on any CPU.

The microkernel scheduler takes care of

these different scheduling requirements

by mapping the scheduling policies

into a single priority space:

• partitioned vs global scheduling

 Is distinguished by a threshold priority

• inside a priority level, different queuing

 policies like FIFO or EDF are supported

Alexander Zuepke
alexander.zuepke@hs-rm.de

Thread Migration for Mixed-Criticality Systems

Resource Sharing in Mixed-Criticality Systems

Mutexes and semaphores do not fulfill the freedom of interference requirements of

ISO 26262 (functional safety in automotive) and IEC 61508 (general functional safety)

when sharing resources among functional units of different criticality.

Instead, we propose the following approach to resource sharing:

• isolate access to shared resources into dedicated driver components

• analyze drivers independently from their users

• use criticality-aware locking protocols to access these drivers

• use thread migration for fast context switching between components

We aim at lowering complexity and improve the analysis of mixed-criticality systems.

Wingert OS

Wingert is a German word for vineyard, originating from

ancient wîngarte, literally wine garden.

Wingert OS, or Wiesbaden Next Generation

Experimental Real-Time OS, is our operating system.

We target 32 and 64-bit CPUs with MMU.

Userspace:

• Bionic Libc

• OpenMP

• paravirtualized Linux

Criticality Inheritance Protocol

Example Scenario:

• C migrates into shared driver α

• D can not enter and waitsα

• C migrates to β

• A preempts C

• B can not enter β

• the inheritance protocol pulls C onto B's CPU

• C leaves , B can enter β β

• C continues on its original CPU after A finishes

• C leaves , D can finally enter α α

Thread Migration

Definition in literature:

• a client lends its thread to the server

• the server is a passive entity

When put into the world of mixed-criticality

systems, this concept provides a fast mechanism

for context switching between isolated

components.

Our proposed body & soul concept allows to exploit

thread migration at the API level:

• “body” keeps a thread's user space attributes

 like associated execution context and stack

• “soul” abstracts a thread's scheduling properties

shared driver 1

P3

less
critical

P1

most
critical

P2

critical

P4

least
critical

Microkernel

shared driver 2

System Architecture

Shared drivers need to have same or higher

criticality levels than their clients. Here, driver 1

is shared by {P2 .. P4} and has to fulfill P2's level.

A

B

C

D

α

β

P
ri

o
ri

ty
 /

 C
ri

ti
ca

lit
y

CPU 2CPU 1

 P-FP

 P-EDF

 G-FP

 G-EDF

 G-BE

C
ri

ti
ca

lit
y

 CPU

waitrelease enter leave finish

α

t

C β

β

A

αB

α

βD

 CPU 1

 CPU 2

body
soul

	Folie 1

